9 dic 2010

LINEA TRONCAL

Es un enlace que interconecta las llamadas externas de una central telefónica, concentrando y unificando varias comunicaciones simultáneas en una sola señal para un transporte y transmisión a distancia más eficiente (generalmente digital) y poder establecer comunicaciones con otra central o una red entera de ellas.
Una central telefónica tipo PBX utiliza una línea troncal para poder hacer de la central parte de la red de otras centrales y mantener comunicaciones. Generalmente las líneas troncales de los PBX son enlaces digitales E1 y T1 que soportan hasta 30 canales (líneas) de voz para la intercomunicación. Si se llegase a interrumpir la comunicación de la línea troncal, no habría manera de establecer comunicación entre las centrales por ninguno de sus 30 canales.
Las centrales telefónicas de gran escala, como las usadas por las compañías de teléfono, utilizan enlaces con mayor capacidad de transmisión o con mayor accesibilidad geográfica, fibra óptica y enlace satelital o de microondas son ejemplos de cada uno respectivamente.

LINEA TELEFONICA

Es un circuito de un sistema de comunicaciones por teléfono. Típicamente, se refiere a un cable físico u otro medio de transmisión de señales que conecte el aparato telefónico del usuario a la red de telecomunicaciones, y normalmente supone también un único número de teléfono asociado a dicho usuario para poder facturarle el servicio prestado.
En 1876 las primeras líneas eran simples conductores metálicos directamente conectados de un teléfono a otro con la Tierra como toma de tierra. Más tarde, en 1878, la compañía de teléfonos Bell System llevó unas líneas (conocidas como bucle local) desde el teléfono de cada usuario a la centralita, que llevaba a cabo todos los intercambios eléctricos necesarios para permitir que las señales de voz fueran transmitidas a teléfonos más lejanos.
Estos cables eran normalmente de cobre (aunque también se ha usado aluminio) y se llevaban de dos en dos, separados aproximadamente 25 cm, sobre postes, y más tarde como pares trenzados. Las líneas modernas pueden ir bajo tierra a un conversor analógico-digital que convierte la señal analógica a digital para transmitirla por fibra óptica.
La mayoría de los hogares están conectados mediante conductores RJ11 de cobre. Cuando se realiza una llamada local, una centralita conecta el bucle local al bucle de abonado del número marcado.

RED

También llamada red de ordenadores o red informática, es un conjunto de equipos informáticos conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricos, ondas electromagnéticas o cualquier otro medio para el transporte de datos para compartir información y recursos[1]. Este término también engloba aquellos medios técnicos que permiten compartir la informaciónLa finalidad principal para la creación de una red de computadoras es compartir los recursos y la información en la distancia, asegurar la confiabilidad y la disponibilidad de la información, aumentar la velocidad de transmisión de los datos y reducir el coste general de estas accionesLa estructura y el modo de funcionamiento de las redes informáticas actuales están definidos en varios estándares, siendo el más importante y extendido de todos ellos el modelo TCP/IP basado en el modelo de referencia OSI. Este último, estructura cada red en 7 capas con funciones concretas pero relacionadas entre sí; en TCP/IP se reducen a 4 capas. Existen multitud de protocolos repartidos por cada capa, los cuales también están regidos por sus respectivos estándares.

CONMUTADOR

Un conmutador o switch es un dispositivo digital de lógica de interconexión de redes de computadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes (bridges), pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las LANs (Local Area Network- Red de Área Local).

modulacion basicas por pulsos ppm (pulce precense modulation)

La modulación por ancho de pulsos (también conocida como PWM, siglas en inglés de pulse-width modulation) de una señal o fuente de energía es una técnica en la que se modifica el ciclo de trabajo de una señal periódica (una senoidal o una cuadrada, por ejemplo), ya sea para transmitir información a través de un canal de comunicaciones o para controlar la cantidad de energía que se envía a una carga.
El ciclo de trabajo de una señal periódica es el ancho relativo de su parte positiva en relación con el período. Expresado matemáticamente:
D = \frac{\tau}{T}
D es el ciclo de trabajo
τ es el tiempo en que la función es positiva (ancho del pulso)
T es el período de la función
La construcción típica de un circuito PWM se lleva a cabo mediante un comparador con dos entradas y una salida. Una de las entradas se conecta a un oscilador de onda dientes de sierra, mientras que la otra queda disponible para la señal moduladora. En la salida la frecuencia es generalmente igual a la de la señal dientes de sierra, y el ciclo de trabajo está en función de la portadora.
La principal desventaja que presentan los circuitos PWM es la posibilidad de que haya interferencias generadas por radiofrecuencia. Éstas pueden minimizarse ubicando el controlador cerca de la carga y realizando un filtrado de la fuente de alimentación.

modulacion basicas por pulsos PAM (pulce amplitude modulation)

La modulación por amplitud de pulsos (Pulse Amplitude-Modulation) (PAM) es la más sencilla de las modulaciones digitales. Consiste en cambiar la amplitud de una señal, de frecuencia fija, en función del símbolo a transmitir. Esto puede conseguirse con un amplificador de ganancia variable o seleccionando la señal de un banco de osciladores. (incluir dibujo de un modulador con amplificador variable) (incluir dibujo de un banco de osciladores)
Dichas amplitudes pueden ser reales o complejas. Si representamos las amplitudes en el plano complejo tenemos lo que se llaman constelaciones de señal (incluir dibujo). En función del número de símbolos o amplitudes posibles se llama a la modulación N-PAM. Así podemos tener 2PAM, 4PAM, 260PAM. De la correcta elección de los puntos de la constelación (amplitudes) depende la inmunidad a ruido (distancia entre puntos) o la energía por bit (distancia al origen).

SATELITE


Un satélite es una nave espacial que se desplaza en una órbita terrestre. Las órbitas son las trayectorias que describen  los satélites alrededor del planeta tierra. Hay satélites artificiales y naturales. Ambos tienen una masa menor con respecto a la masa de la tierra.
Los satélites también se clasifican de acuerdo con la altura de la órbita respecto de la superficie terrestre. De esta forma, se ubican en órbitas bajas, medias y en órbita geoestacionarias. La órbita geoestacionaria está ubicada sobre el plano ecuatorial, es decir, a latitud 0º y a una altura de aproximadamente 36.000 km sobre la superficie de la tierra. Los satélites en esa órbita describen un movimiento que es sincrónico al movimiento de rotación de la tierra. En otras palabras, su posición relativa se mantiene fija con respecto a algún punto de la tierra. El satélite estará ubicado en  la órbita geoestacionaria en la posición 78º longitud oeste

modulacion basicas por pulsos PWM (Pulce Wide Modulation )

La modulación por anchura de pulsos (ó PWM, del ingles pulse-width modulation) es una técnica de modulación en la que se modifica el ciclo de trabajo de una señal periódica para, entre otras cosas, variar la velocidad de un motor.
El ciclo de trabajo de una señal periódica es el ancho relativo de su parte positiva en relación al período. Cuando mas tiempo pase la señal en estado alto, mayor será la velocidad del motor.
Este tren de pulsos, en realidad, hace que el motor marche alimentado por la tensión máxima de la señal durante el tiempo en que esta se encuentra en estado alto, y que pare en los tiempos en que la señal esta en estado bajo.

Aplicaciones :
 
El abanico de aplicaciones en las que se puede utilizar esta técnica es muy amplio, incluyendo el control de fuentes conmutadas, controles de motores, controles de elementos termoeléctricos, choppers para sensores en ambientes ruidosos y algunas otras aplicaciones, tales como el manejo de servos de modelismo. En la actualidad existen muchos circuitos integrados que integran la función PWM, tales como los microcontroladores PIC que hemos utilizado en otros proyectos. Se distinguen por fabricar este tipo de integrados compañías como Texas Instruments, National Semiconductor, Maxim, y algunas otras mas.

corrimientos shift keying ASK (Amplitude Shift Keying )

corrimientos de cambio de claves de claves FSKAmplitude turnos (ASK) es una forma de modulación que representan los datos digitales como variaciones en la amplitud de una onda portadora.La amplitud de una señal portadora análoga varía de acuerdo con el flujo de bits (señal de modulación), manteniendo la frecuencia y de fase constante. El nivel de amplitud puede ser usado para representar valores binarios 0s y 1s. Podemos pensar en una señal portadora como un interruptor ON / OFF. En la señal modulada, la lógica 0 es representado por la ausencia de una compañía, dando así OFF / ON operación de manipulación y de ahí el nombre dado.Me gusta la mañana, ASK es también lineal y sensible al ruido atmosférico, distorsiones, las condiciones de propagación en las diferentes rutas de PSTN, etc Tanto la modulación ASK y procesos de demodulación son relativamente baratos. La técnica ASK también se usa comúnmente para transmitir datos digitales a través de fibra óptica. Para los transmisores LED, 1 binario se representa por un pulso corto de luz y binario 0 por la ausencia de luz. transmisores de láser normalmente tienen un fijo "sesgo" actual que hace que el dispositivo emite un bajo nivel de luz. Este nivel bajo representa el valor 0, mientras que una onda luminosa de amplitud más alta representa el valor 1.

corrimientos shift keying FSK (Frequency Shift Keying )

La Modulación por desplazamiento de frecuencia o FSK, (Frequency Shift Keying) es una técnica de transmisión digital de información binaria (ceros y unos) utilizando dos frecuencias diferentes. La señal moduladora solo varía entre dos valores de tensión discretos formando un tren de pulsos donde un cero representa un "1" o "marca" y el otro representa el "0" o "espacio".
En la modulación digital, a la relación de cambio a la entrada del modulador se le llama bit-rate y tiene como unidad el bit por segundo (bps).
A la relación de cambio a la salida del modulador se le llama baud-rate. En esencia el baud-rate es la velocidad o cantidad de símbolos por segundo.
En FSK, el bit rate = baud rate. Así, por ejemplo, un 0 binario se puede representar con una frecuencia f1, y el 1 binario se representa con una frecuencia distinta f2.
El módem usa un VCO, que es un oscilador cuya frecuencia varía en función del voltaje aplicado.
Indice modulación general para una M − FSKn = (2fd) / [(M − 1)Rsymb]
Siendo: fd: maxima desviación en frecuencia; Rsymb: Velocidad de símbolo por segundo

MULTICANALIZACIONES FDM (Division Multichannelying )

Los multicanalizadores en FDM tienen como entrada varios canales trabajando en diferentes frecuencias y las combina en un solo ancho de banda. En televisión por cable, una red de cable es usada para contener diferentes canales de televisión los cuales utilizan diferentes frecuencias y cuyo ancho de banda de cada canal es de 6 MHz.
Un espectro típico de este tipo de sistemas es de 500 a 800 MHz de ancho de banda, el cual es suficiente para dar cabida a mas de 80 canales de programación. Cada canal funciona separadamente, los cuales al ser sintonizados en el televisor se desmulticanaliza un canal a la vez.

En la figura a) se ven tres canales de televisión de VHF. Canal 2 (54-60 MHz); Canal 3 (60-66 MHz); Canal 4 (66-72 MHz). En la figura b) se muestran los 3 canales espaciados en frecuencia. La figura c) muestra los 3 canales multicanalizados en frecuencia (FDM).

8 dic 2010

MULTICANALIZACIONES TDM (Time Division Multichannelying )

TDM fue originalmente desarrollado en la red telefónica pública en los 50s para eliminar los problemas de ruido y filtraje de FDM cuando muchas señales son multicanalizadas en el mismo medio de transmisión. Después, hubó la necesidad de incrementar la eficiencia de multicanalización en los atestados manojos de cables de las grandes ciudades. Esta técnica hizo uso de la tecnología emergente de esa época, electrónica del estado sólido, y fue 100% digital. La información analógica es primero convertida a formato digital antes de la tansmisión. Aunque el costo inicial de esta técnica fue alto, fue menos que el costo de remplazar cables o cavar grandes tuneles. A principios de los 80s, las redes TDM utilizaban multicanalizadores inteligentes y empezaron a aparecer en redes privadas de datos, conformando el método primario para compartir instalaciones costosas de transmisión de datos entre muchos usuarios.

Un multicanalizador basado en TDM empaqueta un conjunto de información (tramas de bits) de diferentes fuentes en un solo canal de comunicación en tiempos (muy cortos) diferentes. En el otro extremo estas tramas son otra vez reensambladas y llevadas a su respectivo canal. Los mux TDM como manejan tramas de bits son capaces además de comprimir la información al eliminar redundancias en los paquetes, muy útil en el caso de aplicaciones de voz. Una aplicación típica de esta técnica es en los circuitos privados basados en el formato E1. E1 es un estándar de la ITU que soporta una tasa de transmisión de 2.048 Mbps. Cada canal E1 contiene tramas con 32 canales de voz multicanalizados (30 canales son para voz y 2 canales son para la señalización). Esto permite que 30 conversaciones de voz sean transmitidas por un mismo canal simultaneamente multicanalizadas en el tiempo (obviamente, transparente al usuario).

LA TELECOMUNICACION

La telecomunicación («comunicación a distancia», del prefijo griego tele, "distancia" y del latín communicare) es una técnica consistente en transmitir un mensaje desde un punto a otro, normalmente con el atributo típico adicional de ser bidireccional. El término telecomunicación cubre todas las formas de comunicación a distancia, incluyendo radio, telegrafía, televisión, telefonía, transmisión de datos e interconexión de computadoras a nivel de enlace.
Telecomunicaciones, es toda transmisión, emisión o recepción de signos, señales, datos, imágenes, voz, sonidos o información de cualquier naturaleza que se efectúa a través de cables, radioelectricidad, medios ópticos, físicos u otros sistemas electromagnéticos

ONDAS DE MICROONDAS

Se denomina microondas a las ondas electromagnéticas definidas en un rango de frecuencias determinado; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10-9 s) a 3 ps (3×10-12 s) y una longitud de onda en el rango de 1 m a 1 mm. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 1 centímetro a 100 micrometros (3×10-6 m).
El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las UHF (ultra-high frequency, frecuencia ultra alta en español) (0.3 – 3 GHz), SHF (super-high frequency, frecuencia super alta) (3 – 30 GHz) y EHF (extremely high frequency, frecuencia extremadamente alta) (30 – 300 GHz). Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor longitud de onda que las microondas. Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominan ondas milimétricas, radiación terahercio o rayos T.
La existencia de ondas electromagnéticas, de las cuales las microondas forman parte del espectro de alta frecuencia, fueron predichas por Maxwell en 1864 a partir de sus famosas Ecuaciones de Maxwell. En 1888, Heinrich Rudolf Hertz fue el primero en demostrar la existencia de ondas electromagnéticas mediante la construcción de un aparato para producir ondas de radio.

MODEM

Un módem, corto para Modulador, Demodulador, es un dispositivo de hardware que se conecta con tu ordenador y a una línea telefónica. Permite al ordenador conectarse con otros ordenadores a través del sistema de teléfono. Básicamente, los módems son para los ordenadores lo que un teléfono hace para los seres humanos.
Generalmente, hay tres tipos de módem: externos, tarjetas PC, e internos.
La mayoría de los ordenadores actuales tienen módems internos así que puedes enchufar el cable del teléfono directamente al ordenador.

TIPOS DE MODEM:
INTERNOS:
Consiste en una tarjeta de expansión sobre la cual están dispuestos los diferentes componentes que forman los MODEMS. Existen para diversos tipos de conectores:
ISA: Debido a las bajas velocidades que se manejan en estos aparatos, durante muchos años se utilizó en exclusiva este conector, hoy en día en desuso.
PCI: El formato más común en la actualidad.
AMR: Solo en algunas placas muy modernas; baratos pero pocos recomendables por su bajo rendimiento.
                                                   
EXTERNOS:
Son similares a los anteriores pero metidos en una carcasa que se coloca sobre la mesa o el ordenador. La conexión con el ordenador se realiza generalmente mediante uno de los puertos serie o “COM” por lo que se usa la UART del ordenador, que deberá ser capaz de proporcionar la suficiente velocidad de comunicación; actualmente ya existen modelos para puerto USB, de conexión y configuración aún más sencillas.
MODEMS PC-Card:
Son módems que se utilizan en portátiles; su tamaño es similar al de una tarjeta de crédito algo mas gruesa, pero sus capacidades pueden ser iguales o más avanzadas que en los modelos normales.
MODEMS SOFTWARE, HSP o Winmodems:
 Son módems internos en los cuales se han eliminados varias piezas electrónicas, generalmente chips especializados, de manera que el microprocesador del ordenador debe suplir su función mediante software. Lo normal es que utilicen como conexión una ranura PCI (o una AMR), aunque no todos los módems PCI son de este tipo.
MODEMS COMPLETOS: Los módems clásicos no HSP, bien sean internos y externos. En ellos el rendimiento depende casi exclusivamente de la velocidad del MODEM y de la UART, no del microprocesador. 

PROTOCOLO DE RED

En informática, un protocolo es un conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red. Un protocolo es una convención o estándar que controla o permite la conexión, comunicación, y transferencia de datos entre dos puntos finales. En su forma más simple, un protocolo puede ser definido como las reglas que dominan la sintaxis, semántica y sincronización de la comunicación. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos. A su más bajo nivel, un protocolo define el comportamiento de una conexión de hardware.

Las redes de información se pueden clasificar según su extensión y su topología. Una red puede empezar siendo pequeña para crecer junto con la organización o institución. A continuación se presenta los distintos tipos de redes disponibles:
Extensión
De acuerdo con la distribución geográfica:
  • Segmento de red (subred)
Un segmento de red suele ser definido por el "hardware" o una dirección de red específica. Por ejemplo, en el entorno "Novell NetWare", en un segmento de red se incluyen todas las estaciones de trabajo conectadas a una tarjeta de interfaz de red de un servidor y cada segmento tiene su propia dirección de red.
  • Red de área locales (LAN)
Una LAN es un segmento de red que tiene conectadas estaciones de trabajo y servidores o un conjunto de segmentos de red interconectados, generalmente dentro de la misma zona. Por ejemplo un edificio.
  • Red de campus
Una red de campus se extiende a otros edificios dentro de un campus o área industrial. Los diversos segmentos o LAN de cada edificio suelen conectarse mediante cables de la red de soporte.
  • Red de área metropolitanas (MAN)
Una red MAN es una red que se expande por pueblos o ciudades y se interconecta mediante diversas instalaciones públicas o privadas, como el sistema telefónico o los suplidores de sistemas de comunicación por microondas o medios ópticos.
  • Red de área extensa (WAN y redes globales)
Las WAN y redes globales se extienden sobrepasando las fronteras de las ciudades, pueblos o naciones. Los enlaces se realizan con instalaciones de telecomunicaciones públicas y privadas, además por microondas y satélites.

TELEFONIA TRADICIONAL

La Red Telefónica Básica (RTB1) fue creada para transmitir la voz humana. Tanto por la naturaleza de la información a transmitir, como por la tecnología disponible en la época en
que fue creada, es de tipo analógico. Hasta hace poco se denominaba RTC (Red Telefónica Conmutada), pero la aparición del sistema RDSI (digital pero basado también en la conmutación de circuitos) ha hecho que se prefiera utilizar la terminología RTB para la primitiva red telefónica (analógica), reservando las siglas RTC para las redes conmutadas de
cualquier tipo (analógicas y digitales); así pues, la RTC incluye la primitiva RTB y la moderna RDSI (Red Digital de Servicios Integrados). RTB es en definitiva la línea que tenemos en el hogar o la empresa, cuya utilización ha estado enfocada fundamentalmente hacia las comunicaciones mediante voz, aunque cada vez ha ido tomando más auge el uso para transmisión de datos como fax, Internet, etc.

TELEFONIA CELULAR

Los teléfonos celulares han revolucionado el área de las comunicaciones, redefiniendo cómo percibimos las comunicaciones de voz. Tradicionalmente, los teléfonos celulares se mantuvieron fuera del alcance de la mayoría de los consumidores debido a los altos costos involucrados.
Como resultado, las compañías proveedoras de servicios invirtieron tiempo y recursos en encontrar nuevos sistemas de mayor capacidad, y por ende, menor costo. Los sistemas celulares se están beneficiando de estas investigaciones y han comenzado a desarrollarse como productos de consumo masivo.
La telefonía celular es un sistema de comunicación telefónica totalmente inalámbrica. Durante el desarrollo de este trabajo, se verá, como los sonidos se convierten en señales electromagnéticas, que viajan a través del aire, siendo recibidas y transformadas nuevamente en mensajes. A su vez, se especificarán y se compararán las diferentes tecnologías que se utilizan en dicho proceso.

SISTEMAS DE COMUNICACION DIGITALES

Los primeros sistemas de comunicaciones fueron digitales, tal es el caso del telégrafo, pero con la invención del teléfono las comunicaciones se tornaron básicamente analógicas.
Con el paso del tiempo, el uso masivo de computadoras hizo que los esfuerzos se centraran  de nuevo en la comunicación digital, que es la predominante en estos días.
El amplio desarrollo experimentado por los sistemas de comunicaciones ha originado consecuencias sociales significativas, dando lugar en la actualidad a una mayor disponibilidad de información de todo tipo, situación que se ha visto favorecida por los avances de la electrónica digital.
Los estudios relativos a los sistemas de comunicaciones tienen sus orígenes en dos ramas de la ingeniería: la electrónica y las telecomunicaciones, y el tema fundamental es la transmisión de mensajes. Claude Shannon es el protagonista principal de estos estudios, que toman como base a la electrónica digital.
Los estudios relativos a los sistemas de comunicaciones tienen sus orígenes en dos ramas de la ingeniería: la electrónica y las telecomunicaciones, y el tema fundamental es la transmisión de mensajes. Claude Shannon es el protagonista principal de estos estudios, que toman como base a la electrónica digital.

SISTEMAS DE COMUNICACIONES OPTICAS

La comunicación óptica es cualquier forma de comunicación que utiliza la luz como medio de transmisión
Un sistema óptico de comunicación consiste de un transmisor que codifica el mensaje dentro de una señal óptica, un canal, que transporta la señal a su destino, y un receptor, que reproduce el mensaje desde la señal óptica recibida.
Formas de comunicación óptica
 Hay muchas formas de comunicaciones ópticas no tecnológicas, incluyendo el lenguaje corporal y el lenguaje de señas. Técnicas como el telégrafo óptico, las banderas de señales, señales de humo y hogueras fueron las primeras formas de comunicación óptica tecnológicas.

 Hay muchas formas de comunicaciones ópticas no tecnológicas, incluyendo el lenguaje corporal y el lenguaje de señas. Técnicas como el telégrafo óptico, las banderas de señales, señales de humo y hogueras fueron las primeras formas de comunicación óptica tecnológicas.

SONAR

El sonar (del inglés SONAR, acrónimo de Sound Navigation And Ranging, ‘navegación por sonido’) es una técnica que usa la propagación del sonido bajo el agua (principalmente) para navegar, comunicarse o detectar otros buques.
El sonar puede usarse como medio de localización acústica, funcionando de forma similar al GPS tipo IBZ, con la diferencia de que en lugar de emitir señales de radioelectrónica se emplean impulsos sonoros y magnéticos. De hecho, la localización acústica se usó en aire antes que el GPS, siendo aún de aplicación el SODAR (la exploración vertical aérea con sonar) para la investigación atmosférica.
Funciona de manera similar al radar, no al GPS, puede ser piezoeléctrico o magnetoestrictivo.
El término «sonar» se usa también para aludir al equipo empleado para generar y recibir el sonido de carácter infrasonoro. Las frecuencias usadas en los sistemas de sonar van desde las intrasonicas a las extrasonicas (entre 20 Hz y 20.000 Hz), la capacidad del oído humano. Sin embargo, en este caso habría que referirse a un hidrofono y no a un sonar. El sonar tiene ambas capacidades, puede ser utilizado como hidrofono o como sonar.

FIBRA OPTICA

La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.
Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagneticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

RADAR

El radar (término derivado del acrónimo inglés RAdio Detection And Ranging, “detección y medición de distancias por radio”) es un sistema que usa ondas electromagnéticas para medir distancias, altitudes, direcciones y velocidades de objetos estáticos o móviles como aeronaves, barcos, vehículos motorizados, formaciones meteorológicas y el propio terreno. Su funcionamiento se basa en emitir un impulso de radio, que se refleja en el objetivo y se recibe típicamente en la misma posición del emisor. A partir de este "eco" se puede extraer gran cantidad de información. El uso de ondas electromagnéticas permite detectar objetos más allá del rango de otro tipo de emisiones (luz visible, sonido, etc.)